Invariances and Diversities in the evolution of business firms

Angelo Secchi

Centre d’Economie de la Sorbonne
Paris, December 2010
Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Major research question

Fundamental drivers of the evolution of contemporary economies are the activities of

- search
- discovery
- economic exploitation

of new products, new production processes, new organizational arrangements within and amongst business firms

Given that, what are the statistical properties that such processes might possibly display?
3 operative questions

■ **First**, are there distinct characteristics of the micro-entities (in primis, business firms) and their distributions which systematically persist over time?

■ **Second**, how do such possible heterogeneous characteristics within the population of competing firms affect their relative evolutionary success over time?

■ **Third**, amongst the foregoing statistical properties and relations between them, which ones are invariant across industries, and, conversely, which ones depend on the technological and market characteristics of particular sectors?
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Empirically based Industrial Dynamics

Main building block:

- we are well aware of a continuing movement of the elements which make up the population as it appears

- still certain economic distributions are stable over time

This point at the idea of **steady-state equilibrium**: “a state of macroscopic equilibrium maintained by a large number of transitions in opposite directions” (Feller, 1957).
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
FSD - Firm size distribution

Italian manufacturing industry, 1997
FSD - Firm size distribution

Italian manufacturing industry, 1997
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Single input productivity distributions

- Widespread heterogeneity again persistent over time

- We do not find evidence of a simple relation predicting that financial conditions should map on to one with efficiency in production. Two tentative interpretations.

- Results are robust to sectoral disaggregation at 2-digit level.
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
FGRD - Firm growth rates distribution

Let us consider again the normalized (log) firm size $s_i(t)$. We then define growth rates as its first difference:

$$g_i(t) = s_i(t + 1) - s_i(t)$$
Italian Manufacturing industry, 1997
FGRD - Firm growth rates distribution

Aggregate

Pharmaceuticals

Cutlery, tools and general hardware

Footwear
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Firms profitability distribution

Consider the variable

$$GM_i(t) = (VA_i(t) - W_i(t))/VA_i(t)$$

where GM_i is gross operating margins; VA_i is value added; W_i is the total wage cost.
Figure: Empirical densities of (log) Gross Margin by sector. Thousands of euro, deflated with production price index. Italian data.
Most robust findings on profitability

A sum up of the most robust findings on profitability

- wide distributions of probabilities across firms characterize all sectors
- stability over time
- some (mild) regression to the mean tendencies
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Positive-feedback model

Observed growth as the cumulative effect of diverse “events”

\[g(t; T) = s(t + T) - s(t) = \epsilon_1(t) + \epsilon_2(t) + \ldots = \sum_{j=1}^{G(t; T)} \epsilon_j(t) \]

- shock \(\epsilon_j \) are independent from size \(s \)
- opportunities \(G \) progressively captured by firms

Suppose to have \(M \) opportunities to be assigned to \(N \) firms. One possibility is to assign each opportunity with the same probability **BUT this implies a Gaussian growth rate distribution.**
1. Consider an urn with \(N \) different balls, each representing a firm.

Draw a ball and replace with \textbf{TWO} of the same kind. (Here the first draw from an urn with two types of ball)

2. Repeat this procedure \(M \) times.

RESULT: partition of \(M \) events on \(N \) firms.
Convergence result

When the number of opportunities is very low the FGRD generated by the model is almost gaussian. When M increases
Convergence result

M=1

Firm Growth Rates
Convergence result

M=10

Firm Growth Rates
Convergence result

M=50

Firm Growth Rates

M=10

M=20

M=50

M=100

M=200

M=500

M=1000

M=2000

M=5000

M=10000

M=20000

M=50000

M=100000
Convergence result

<table>
<thead>
<tr>
<th>Firm Growth Rates</th>
<th>M=1</th>
<th>M=10</th>
<th>M=20</th>
<th>M=50</th>
<th>M=100</th>
<th>M=500</th>
<th>M=1000</th>
<th>M=2000</th>
<th>M=5000</th>
<th>M=10000</th>
<th>M=20000</th>
<th>M=50000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-05</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.01</td>
<td>0.1</td>
<td>1</td>
<td>1e-05</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Firm Growth Rates</td>
<td>M=1</td>
<td>M=10</td>
<td>M=20</td>
<td>M=50</td>
<td>M=100</td>
<td>M=200</td>
<td>M=500</td>
<td>M=1000</td>
<td>M=2000</td>
<td>M=5000</td>
<td>M=10000</td>
<td>M=20000</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1e-05</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.01</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Convergence result for different values of M (M=1, M=10, M=20, ..., M=100000) showing Firm Growth Rates.

Diagram for M=500 showing the convergence result.
Convergence result

M=1000

Firm Growth Rates
Convergence result

Firm Growth Rates

M=2000

0.0001 0.001 0.01 0.1 1
-5-4-3-2-1 0 1 2 3 4 5
Convergence result

M=5000
Convergence result

M=10000

Firm Growth Rates
Convergence result
Convergence result

For different values of M, the graph shows the firm growth rates. The x-axis represents the firm growth rates, while the y-axis shows the convergence result for each value of M:

- M=1
- M=10
- M=20
- M=50
- M=100
- M=200
- M=500
- M=1000
- M=2000
- M=5000
- M=10000
- M=20000
- M=50000
- M=100000

The graph illustrates the convergence of growth rates for various M values, with 10^-5 to 1 on the y-axis and -5 to 5 on the x-axis.
Convergence result

![Graph showing firm growth rates for different values of M.]
Convergence result

M=500000

Firm Growth Rates

1e-05 0.0001 0.001 0.01 0.1 1
-5-4-3-2-1 0 1 2 3 4 5
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Dividing firms in size classes and computing the Log(Std.Dev) for their growth rates

\[\ln \sigma(G_i) = \beta \ln S_i \]

\[\beta = -0.21(0.02) \]
\[G_i(t) = \sum \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_i(t)} - 1 = \sum_j \frac{1}{N_i(t)} \cdot G_{ij}(t) \cdot \Delta_{ij}(t) \quad (1) \]

where

- \[G_{ij}(t) = \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_{ij}(t)} - 1 \] Growth in a given sub-market

- \[\Delta_{ij}(t) = \frac{N_i(t) \cdot \tilde{S}_{ij}(t)}{\tilde{S}_i(t)} \] Corporate Coherence

- \[N_i(t) \] Diversification
\[G_i(t) = \sum \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_i(t)} - 1 = \sum_j \frac{1}{N_i(t)} \quad G_{ij}(t) \cdot \Delta_{ij}(t) \quad (1) \]

where

- \(G_{ij}(t) = \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_{ij}(t)} - 1 \) \text{Growth in a given sub-market}
 \text{No observed relation with S!}

- \(\Delta_{ij}(t) = \frac{N_i(t) \cdot \tilde{S}_{ij}(t)}{\tilde{S}_i(t)} \) \text{Corporate Coherence}

- \(N_i(t) \) \text{Diversification}
\[G_i(t) = \sum \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_i(t)} - 1 = \sum_j \frac{1}{N_i(t)} \cdot G_{ij}(t) \cdot \Delta_{ij}(t) \quad (1) \]

where

- \(G_{ij}(t) = \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_{ij}(t)} - 1 \) Growth in a given sub-market
 - No observed relation with \(S \)!

- \(\Delta_{ij}(t) = \frac{N_i(t) \cdot \tilde{S}_{ij}(t)}{\tilde{S}_i(t)} \) Corporate Coherence
 - No observed relation with \(S \)!

- \(N_i(t) \) Diversification
\[G_i(t) = \sum \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_i(t)} - 1 = \sum_j \frac{1}{N_i(t)} G_{ij}(t) \Delta_{ij}(t) \quad (1) \]

where

- \(G_{ij}(t) = \frac{\tilde{S}_{ij}(t + 1)}{\tilde{S}_{ij}(t)} - 1 \) Growth in a given sub-market

No observed relation with \(S \)

- \(\Delta_{ij}(t) = \frac{N_i(t) \tilde{S}_{ij}(t)}{\tilde{S}_i(t)} \) Corporate Coherence

No observed relation with \(S \)

- \(N_i(t) \) Diversification

It must have a relation with \(S \)
Random diversification: random arrival of independent diversification events during the firms’ history

Linear relation between N and S
Random diversification: random arrival of independent diversification events during the firms’ history

Linear relation between N and S

Scope economy to diversification: the capability of a firm to enter a new market increases with its past successful diversification events

Exponential relation between N and S
Clear exponential relation between $N_i \sim S_i$

The sole diversification explains the relation $\text{var}_{it}[G_i(t)] \sim S_i$!
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
Outline

Sketching the research framework

Pervasive heterogeneity
 in size
 in production structure
 in growth
 in profitabilities

Self-reinforcing mechanisms
 in growth processes
 in diversification processes
 in location processes (No time)

Conclusions
The model is the policy

1. Empirical investigations detect regularities emerging from heterogeneous behavior;

2. these regularities suggest the presence of self-reinforcing mechanisms possibly operating at different levels (growth, diversification, ...)

3. capturing these effects is a necessary condition to obtain more reliable models of industrial dynamics,

4. in turn offering (perhaps) interesting insights also for more aggregate models.